Abstract
Migratory species are expected to demonstrate habitat selection that occurs at multiple spatial and temporal scales. Western monarch butterflies migrate seasonally to overwintering groves at geographically predictable locations along the coast of California. To date, overwintering habitat selection by western monarch butterflies has primarily been studied assuming the microclimate hypothesis. Specifically, that microclimate habitat selection occurs when monarchs form dense overwintering aggregations in overwintering groves. However, western monarch butterflies are migratory; thus, previous habitat selection studies could have commingled selection at different scales into a single local scale in the site of aggregation. Therefore, we explore monarch overwintering habitat selection to determine whether an explicit spatial framework is necessary. We studied nine groves on the coast of California, and at each we collected temperature, humidity, and light data from grove edges, grove interiors, and aggregation locations for several weeks during the overwintering season. We tested the hypothesis that monarchs aggregate in locations in groves that have a unique microclimate that is consistently selected across groves (the microclimate hypothesis). We find no evidence supporting the hypothesis that aggregation locations have a unique microclimate that differs significantly from that of other locations inside the grove or that aggregation locations are uniform in their microclimatic attributes across overwintering groves. Rather, we find that microclimatic attributes in aggregation locations vary spatially with latitude, and that aggregation conditions exist in a large portion of each grove. We conclude that it will be necessary to consider spatial effects when studying or managing western monarch butterfly overwintering habitats, and that interpretations of habitat selection to date likely commingle habitat selection on the local and geographical scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.