Abstract
The question of whether processing three-dimensional digital patterns is much more difficult than two-dimensional ones is of great interest from both theoretical and practical standpoints. Recently, owing to advances in many application areas, such as computer vision, robotics, and so forth, it has become increasingly apparent that the study of three-dimensional pattern processing is of crucial importance. Thus, the study of three-dimensional automata as a computational model of three-dimensional pattern processing has become meaningful. This article introduces a cooperating system of three-dimensional finite automata as one model of three-dimensional automata. A cooperating system of three-dimensional finite automata consists of a finite number of three-dimensional finite automata and a three-dimensional input tape where these finite automata work independently (in parallel). Those finite automata whose input heads scan the same cell of the input tape can communicate with each other, i.e., every finite automaton is allowed to know the internal states of other finite automata on the cell it is scanning at the moment. In this article, we continue the study of cooperating systems of three-dimensional finite automata, and mainly investigate hierarchies based on the number of their cooperating systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.