Abstract

This paper proposes a hierarchical-structure-based fault estimation and fault-tolerant control design with bidirectional interactions for nonlinear multiagent systems with actuator faults. The hierarchical structure consists of distributed multiagent system hierarchy, undirected topology hierarchy, decentralized fault estimation hierarchy, and distributed fault-tolerant control hierarchy. The states and faults of the system are estimated simultaneously by merging the unknown input observer in a decentralized fashion. The distributed-constant-gain-based and node-based fault-tolerant control schemes are developed to guarantee the asymptotic stability and H-infinity performance of multiagent systems, respectively, based on the estimated information in the fault estimation hierarchy and the relative output information from neighbors. Two simulation cases validate the efficiency of the proposed hierarchical structure control algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.