Abstract

Hierarchically structured poly(alkyl‐p‐xylylene) (alkyl‐PPX) nonwovens are prepared by specific parameter variation during the electrospinning process. The investigated parameters are changes in solutions properties and ambient humidity level, which lead to the formation of different fiber architectures and surface morphologies. The characterization of the nonwovens by scanning electron microscopy confirms the formation of hierarchically structured fibers, comprising bead‐on‐string architecture if spun from tetra­hydrofuran (THF) solutions, and porous surfaces at relative humidity (RH) levels > 30% for both chloroform and THF solutions. The wetting properties of nonwovens spun from THF and chloroform solutions are analyzed by water contact angle (CA) measurements, roll‐angle determination, and high speed imaging. PPX‐heptyl and PPX‐butyl fiber mats spun from 2.5 wt% THF and PPX‐heptyl spun from 3 wt% chloroform solutions at RH > 75% show superhydrophobic and self‐cleaning properties with CA > 153° and roll‐off angles of 10–15°. The nonwovens maintain their fiber morphology and water‐repellent properties after thermal and mechanical stress.image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call