Abstract

The performances of fiber dye-sensitized solar cells (FDSSCs), in terms of charge collection efficiency, light-harvesting ability, and structural stability, are improved through a novel hierarchically structured photoanode based on a Ti microridge/nanorod-modified wire substrate. The microridge made of several Ti micropits is inserted into TiO2 layer to shorten the photoelectron transport distance from the original place in the TiO2 layer to substrate and to increase the electron transport rate. The Ti micropits are used as light-gathering centers to collect the reflected light. Meanwhile, the Ti nanorods are evenly distributed on the surface of the microridge-coated Ti wire substrate, which increases the contact area between the substrate and the TiO2 layer in order to suppress the electron recombination and scatters the incident light to further improve the light-harvesting ability. Therefore, the charge collection and power conversion efficiencies of the novel FDSSC have been accordingly enhanced by 17.7% and 61.6%, respectively, compared with traditional FDSSC. Moreover, the structural stability of the novel FDSSC has been strengthened.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.