Abstract
AbstractCarbon nanotube (CNT)‐reinforced polymer fibers have broad applications in electrical, thermal, optical, and smart applications. The key for mechanically robust fibers is the precise microstructural control of these CNTs, including their location, dispersion, and orientation. A new methodology is presented here that combines dry‐jet‐wet spinning and forced assembly for scalable fabrication of fiber composites, consisting of alternating layers of polyacrylonitrile (PAN) and CNT/PAN. The thickness of each layer is controlled during the multiplication process, with resolutions down to the nanometer scale. The introduction of alternating layers facilitates the quality of CNT dispersion due to nanoscale confinement, and at the same time, enhances their orientation due to shear stress generated at each layer interface. In a demonstration example, with 0.5 wt% CNTs loading and the inclusion of 170 nm thick layers, a composite fiber shows a significant mechanical enhancement, namely, a 46.4% increase in modulus and a 39.5% increase in strength compared to a pure PAN fiber. Beyond mechanical reinforcement, the presented fabrication method is expected to have enormous potential for scalable fabrication of polymer nanocomposites with complex structural features for versatile applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.