Abstract
A facile and robust approach for fabricating structured, blue-emitting polymer hybrids is explored by grafting poly(styrene) incorporating π-conjugated oligo(fluorene) side-chains, to fluoromica silicate layers through surface-initiated nitroxide-mediated polymerization (SI-NMP). It is expected that the polymer intercalation can effectively reduce π-stacking, chain–chain interactions, twists and bends, and interfacial effects, leading to significant difference in the electronic/optoelectronic properties, and improved optical, thermal and chemical stability of the materials. The experimental results indicate that the bottom-up strategy is rational and efficacious. The hybrids exhibit a blue photoluminescence quantum yield (PL-QY) as high as 0.90, even in the solid, which makes the materials appealing for polymer light-emitting devices (PLEDs). The materials also show significantly enhanced thermal, and chemical stabilities with respect to the organic precursors. If processed under specific controlled conditions, the hybrids spontaneously assemble into highly ordered microporous films, where an organization of matter at different length scales is obtained. Since the introduction of surface patterning in the active layer could enhance the extraction of light generated in the device, this hierarchical organization is a promising tool for the further development of optimized hybrid PLEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.