Abstract

In this particular work, the fabrication of SrTiO3@TiO2@ Fe2O3 nanorod heterostructure has been demonstrated via hydrothermal growth of SrTiO3 cubic on the rutile TiO2 nanorod as a template and later sensitized with Fe2O3 for photocatalytic solar hydrogen production in a tandem photoelectrochemical cell and dye-sensitized solar cell (DSSC) module. The photocatalytic solar hydrogen production of this heterostructure was optimized by controlling the amount of Sr and Fe on the surface of photocatalyst. The details of the influencing parameters on the physicochemical and photoelectrochemical properties are discussed. It was found that the morphology and quality of the fabricated materials were greatly manipulated by the concentration of Sr and Fe. The optimized 0.025 M SrTiO3@TiO2@ Fe2O3 heterostructure exhibited a higher photoconversion efficiency with a long electron lifetime, low charge transfer resistance and large donor density at the electrode and electrolyte interface. This composite has significantly improved the photocatalytic hydrogen production, yielding 716 μmol/cm2 of maximum accumulative hydrogen. These results show that morphology rendering and manipulation of energy band alignment is crucial in creating efficient heterojunctions for excellent contributions in photocatalytic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.