Abstract

Sterically spacing and locating functional matters at the nanoscale exert critical effects on their application, especially for the fluorescence probes whose aggregation causes emission quenching. Here we achieved a hierarchical spacing strategy of DNA fluorescence probes for ion detection via locating them separately on rod-like cellulose nanocrystals (CNCs) and further isolating CNCs by pre-grafting long molecular chains. Controlling chemical structure of CNC and location degree could adjust the inter-space of DNA probes (with a molecular length of ca. 3.6 nm) in a range of 3.5–6.5 nm with a gradient about 0.2 nm. A length up to micrometer scale of the CNC nanorods was necessary to provide DNA probes with well-separated grafting locations and enough freedom, which brought a vast linear detection range from 10 nmol/L to 5 μmol/L of Hg2+ concentration. The abundant reactive sites on CNC allowed a grafting pre-location of poly (tert-butyl acrylate) (PtBA) to promote the isolation of DNA probes. Controlled radical polymerization was employed to adjust the length of PtBA molecular chains, which increased the linear sensitivity coefficient of Hg2+ detection by ca. 2.5 times. This hierarchical nanoscale spacing concept based on chemical design can hopefully conduce to the development of biosensor and medical diagnosis. A hierarchical spacing strategy was applied to separate DNA fluorescent probes on CNCs and detect ion concentration linearly. The first-level spacing was to locate probes uniformly on CNCs, obtaining a wide linear range; and the second-level spacing was to isolate CNCs with polymer, obtaining an increased linear coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call