Abstract
A mechanically durable and scalable superhydrophobic coating was fabricated by combining the advantages of both bottom-up and top-down approaches into a one-pot, one-step application method. This is achieved by spray coating a solution consisting of silica nanoparticles, which are embedded within epoxy resin, onto a heated substrate to rapidly drive both solvent evaporation and curing simultaneously. By maintaining a high substrate temperature, the arrival of spray-delivered micrometer-sized droplets are rapidly cured onto the substrate to form surface microroughness, while simultaneously, rapid solvent evaporation within each droplet results in the formation of a nanoporous structure. SEM, dual-beam FIB, and cross-sectional TEM/EDAX elemental mapping were used to confirm both the chemistry and the requisite micro- and nano-porosity within the coating structure requisite for superhydrophobicity. The resultant coatings exhibit contact angles greater than 150° (153.8°±0.8°) and roll-off angles of 8°±2°, with a coating hardness of 6H on the pencil hardness scale, and a rating of 5 on an ASTM crosshatch test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.