Abstract

Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion-based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP)HP] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m-2) under solar intensities of 890 and 750 W m-2, respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call