Abstract

A promising energy storage material, MnO2 /hierarchically porous carbon (HPC) nanocomposites, with exceptional electrochemical performance and ultrahigh energy density was developed for asymmetric supercapacitor applications. The microstructures of MnO2 /HPC nanocomposites were characterized by transmission electron microscopy, scanning transmission electron microscopy, and electron dispersive X-ray elemental mapping analysis. The 3-5 nm MnO2 nanocrystals at mass loadings of 7.3-10.8 wt % are homogeneously distributed onto the HPCs, and the utilization efficiency of MnO2 on specific capacitance can be enhanced to 94-96 %. By combining the ultrahigh utilization efficiency of MnO2 and the conductive and ion-transport advantages of HPCs, MnO2 /HPC electrodes can achieve higher specific capacitance values (196 F g(-1) ) than those of pure carbon electrodes (60.8 F g(-1) ), and maintain their superior rate capability in neutral electrolyte solutions. The asymmetric supercapacitor consisting of a MnO2 /HPC cathode and a HPC anode shows an excellent performance with energy and power densities of 15.3 Wh kg(-1) and 19.8 kW kg(-1) , respectively, at a cell voltage of 2 V. Results obtained herein demonstrate the excellence of MnO2 /HPC nanocomposites as energy storage material and open an avenue to fabricate the next generation supercapacitors with both high power and energy densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call