Abstract

Wearable sensing systems are suitable for monitoring human motion. To realize a cost-effective and self-powered strain-sensing fiber, we developed a mechano-electrochemical harvesting yarn and textile using hierarchically arranged plied yarns composed of meter-long graphene-coated cotton yarns. Such a fiber relies on the principle of electrochemical capacity change to convert mechanical energy to electric energy. Further, this harvester can be used as a self-powered strain sensor because its output depends on mechanical stimuli. Additionally, the yarn can be woven into a kinematic sensing textile that measures the strength and direction of the applied force. The textile-type harvester can successfully detect various human movements such as pressing, bending, and stretching. The proposed sensing fiber will pave the way for the development of advanced wearable systems for ubiquitous healthcare in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call