Abstract

By constraining an asymmetric comb block copolymer (CBCP) toluene solution to evaporate in a wedge-on-Si geometry composed of a wedge lens situated on a Si substrate, gradient concentric stripelike surface patterns of CBCP at the microscopic scale were yielded as a direct consequence of controlled evaporative self-assembly of CBCP. The formation of either straight stripes or jagged stripes was dictated by the height of the wedge. Upon subsequent solvent vapor annealing, hierarchically organized structures of CBCP were produced, resulting from the interplay of solvent vapor assisted, unfavorable interfacial interaction driven destabilization of CBCP from the Si substrate at the microscopic scale and the solvent vapor promoted reconstruction of CBCP nanodomains within the stripes at the nanometer scale. This facile approach of combining controlled evaporative self-assembly with subsequent solvent vapor annealing offers a new platform to rationally design and engineer self-assembling building blocks into functional materials and devices in a simple, cost-effective manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.