Abstract

Hierarchical nanostructures of ZnO are integrated architectures comprising well-ordered nanoscale subunits and excellent photocatalytic properties. In this study, synthesis of ZnO nanoparticles using methods such as co-precipitation, hydrothermal, thermal decomposition, and electrochemical precipitation yielded microsphere, nanorod, pyramid, and nanopetal-like morphologies, respectively. The catalysts obtained were characterized using XRD, IR, SEM-EDX, UVDRS, TGA, PL, and Zeta potential analysis. The XRD spectra confirmed that all the different morphologies of ZnO have hexagonal wurtzite structures The photocatalytic activity of these nanostructures was determined using a dye degradation study on a model pollutant Methylene Blue (MB) under simulated visible light. The kinetic study of the dye degradation reveals that it obeys pseudo-first-order kinetics with a maximum rate constant of 0.01503 min−1. The nanorod structured ZnO particles prepared by the hydrothermal method showed the best catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.