Abstract

The construction of safe and environmentally-benign solid-state electrolytes (SSEs) with intrinsic hydroxide ion-conduction for flexible zinc-air batteries is highly desirable yet extremely challenging. Herein, hierarchically nanostructured CCNF-PDIL SSEs with reinforced concrete architecture are constructed by nanoconfined polymerization of dual-cation ionic liquid (PDIL, concrete) within a robust three-dimensional porous cationic cellulose nanofiber matrix (CCNF, reinforcing steel), where plenty of penetrating ion-conductive channels are formed and undergo dynamic self-rearrangement under different hydrated levels. The CCNF-PDIL SSEs synchronously exhibit good flexibility, mechanical robustness, superhigh ion conductivity of 286.5 mS cm-1 , and decent water uptake. The resultant flexible solid-state zinc-air batteries deliver a high-power density of 135 mW cm-2 , a specific capacity of 775 mAh g-1 and an ultralong cycling stability with continuous operation of 240 hours for 720 cycles, far outperforming those of the state-of-the-art solid-state batteries. The marriage of biomaterials with the diversity of ionic liquids creates enormous opportunities to construct advanced SSEs for solid-state batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.