Abstract

Three-dimensional dendritic nanostructured carbon florets (NCFs) with tailored porosity are demonstrated as electrochemically versatile electrodes for both adsorptive and intercalative energy storage pathways. Achieved through a single-step template-driven approach, the NCFs exhibit turbostratic graphitic lamellae in a floral assembly leading to high specific surface area and multi-modal pore distribution (920 m2/g). The synergism in structural and chemical frameworks, along with open-ended morphology, enables bifunctionality of hard carbon NCFs as symmetric adsorptive electrodes for supercapacitors (SCs) and intercalation anodes for hybrid potassium-ion capacitors (KICs). Flexible, all-solid-state SCs through facile integration of NCF with the ionic-liquid-imbibed porous polymeric matrix achieve high-energy density (20 W h/kg) and power density (32.7 kW/kg) without compromising on mechanical flexibility and cyclability (94% after 20k cycles). Furthermore, NCF as an anode in a full-cell hybrid KIC (activated carbon as cathode) delivers excellent electrochemical performance with maximum energy and power densities of 57 W h/kg and 12.5 kW/kg, respectively, when cycled in a potential window of 1.0-4.0 V. The exceptional bifunctional performance of NCF highlights the possibility of utilizing such engineered nanocarbons for high-performance energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call