Abstract

AbstractHighly efficient light‐trapping polymer films are designed to enhance the photocurrent of semitransparent organic photovoltaics (ST‐OPVs) in indoor and outdoor conditions. An asymmetric‐reflection film fabricated through the novel combination of randomly arranged nanostructures with periodically assembled microstructures exhibits selectivity for the direction of incident light. The film effectively traps light within the device by selectively reflecting light that escapes from the inside out. Moreover, this light‐trapping effect is maximized by attaching the films to both sides of the bifacial ST‐OPVs operating under solar and indoor sources, simultaneously. Accordingly, the light‐trapping polymer film platform presents short‐circuit current density ( JSC) enhancement of ST‐OPVs by 13.49% and 46.19% under air mass 1.5G and light‐emitting diodes (1000 lux) illumination, respectively, and provides new opportunities for ST‐OPVs in a variety of practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call