Abstract

The aim of this study was to synthesize effective and economical MoS2/CdNi@rGO photocatalysts and investigate their performance in the degradation of organic pollutants in synthetic effluent. The objective was to assess the characterization results of the synthesized photocatalysts using XRD, SEM/EDS, TEM/HR-TEM, Raman spectrum, and BET isotherm analysis tools. These analyses revealed the good adhesion of MoS2 with rGO and provided insights into the structure and properties of the materials. The results showed that the MoS2/CdNi@rGO photocatalysts exhibited remarkable degradation efficiency for organic pollutants such as Rhodamine-B, erichrome black, and malachite green. The outcomes of the study demonstrated that the MoS2/CdNi@rGO catalyst had the greatest rate constant for Rhodamine-B (RhB) decomposition. which would have been approximately 33 times higher than that of pure RGO (0.0121 min−1). The MoS2/CdNi@rGO photocatalysts also showed excellent recyclability and persistence across five recycle assays, indicating their potential for practical applications in wastewater treatment. The photocatalyst was moderately active, stable up to its fifth usage and stability of the photocatalyst before and after the photocatalytic reaction was also been studied using XRD and SEM. Further research in this area could lead to the development of advanced photocatalytic technologies for environmental remediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.