Abstract

We report the synthesis of hierarchical vanadium pentoxide (V2 O5 ) spheres as anode materials for sodium-ion batteries (Na-ion batteries). Through field emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy characterizations, it was found that the as-prepared V2 O5 spheres are composed of primary nanoparticles with pores between them. The as-prepared hierarchical V2 O5 spheres achieved a discharge capacity of 271 mA h g(-1) at a current density of 40 mA g(-1) , and 177 mA h g(-1) discharge capacity after 100 cycles. Even at high current densities, V2 O5 spheres still delivered high capacity and superior cyclability (179 and 140 mA h g(-1) discharge capacities at 640 and 1280 mA g(-1) current densities, respectively). The promising electrochemical performances of V2 O5 spheres should be ascribed to the unique architecture of hierarchical spheres and the predominant exposed (110) facets, which provides open interlayers for facile sodium ion intercalation. Each nanoparticle contains predominantly exposed (110) crystal planes. The ex situ FESEM analysis revealed that the pores formed by the primary nanocrystals effectively buffer volume changes in the electrode during cycling, contributing to the excellent cycling performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.