Abstract
Titanium nitride (TiN) is an attractive electrode material in fast charging/discharging supercapacitors because of its excellent conductivity. However, the low capacitance and mechanical brittleness of TiN restricts its further application in flexible supercapacitors with high energy density. Thus, it is still a challenge to rationally design TiN electrodes with both high electrochemical and mechanical properties. Herein, the hierarchical TiN nanoparticles-assembled nanopillars (H-TiN NPs) array as binder free electrodes were obtained by nitriding of hierarchical titanium dioxide (TiO2) nanopillars, which was produced by a simple hydrothermal treatment of anodic TiO2 nanotubes (NTs) array in water. The porous TiN nanoparticles connected to each other to form ordered nanopillar arrays, effectively providing larger specific surface area and more active sites for charge storage. The H-TiN NPs delivered a high volumetric capacitance of 120 F cm-3 at 0.83 A cm-3, which is better than that of TiN NTs arrays (69 F cm-3 at 0.83 A cm-3). After assembling into all-solid-state devices, the H-TiN NPs based supercapacitors exhibited outstanding volumetric capacitance of 5.9 F cm-3 at 0.02 A cm-3 and a high energy density of 0.53 mW h cm-3. Our results reveal a new strategy to optimize the supercapacitive performance of metal nitrides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.