Abstract
Thermal management is crucial for the mass transport and water balance of proton exchange membrane fuel cell (PEMFC). Inspired by this, a hierarchical thermal management strategy (TMS) is proposed for fuel cell hybrid electric vehicle (FCHEV). In particular, the transient TMS demands are determined by a well-designed energy management strategy (EMS) taking health and thermal safety into consideration. Furthermore, along with the high-efficiency heat dissipation, a hydrogen consumption minimization strategy (HCMS) is proposed via optimal temperature tracking, which investigates the desirable trace offline. These parallel strategies are incorporated through the deep reinforcement learning (DRL)-based deep deterministic policy gradient (DDPG) algorithm. With the help of its self-adaptive ability, DDPG deals with the complicated TRS problem in multidimensional coupled cooling system, through a mutually updated actor-critic framework. Results suggest the superiority and reliability of proposed TMS with respect to the stack efficiency, fuel economy and tracking performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.