Abstract

Hierarchical structures on metallic implants can enhance the interaction between cells and implants and thus increase their biocompatibility. However, it is difficult to directly fabricate hierarchical structures on metallic implants. In this study, we used a simple one-step method, ultrasonic nanocrystal surface modification (UNSM), to fabricate hierarchical surface structures on a nickel-titanium (NiTi) alloy. During UNSM, a tungsten carbide ball hits metal surfaces at ultrasonic frequency. The overlapping of the ultrasonic strikes generates hierarchical structures with microscale grooves and embedded nanoscale wrinkles. Cell culture experiments showed that cells adhere better and grow more prolifically on the UNSM-treated samples. Compared with the untreated samples, the UNSM-treated samples have higher corrosion resistance. In addition, the surface hardness increased from 243 Hv to 296 Hv and the scratch hardness increased by 22%. Overall, the improved biocompatibility, higher corrosion resistance, and enhanced mechanical properties demonstrate that UNSM is a simple and effective method to process metallic implant materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.