Abstract
Hamiltonian chaotic dynamics is not ergodic due to the infinite number of islands imbedded in the stochastic sea. Stickiness of the islands' boundaries makes the wandering process very erratic with multifractal space-time structure. This complication of the chaotic process can be described on the basis of fractional kinetics. Anomalous properties of the chaotic transport become more transparent when there exists a set of islands with a hierarchical structure. Different consequences of the described phenomenon are discussed: a distribution of Poincare recurrences, characteristic exponents of transport, nonuniversality of transport, log periodicity, and chaos erasing. (c) 2000 American Institute of Physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.