Abstract
The development of microstructures which combine high total surface area and high porosity is crucial for technologies such as electrocatalysis, electrochromics, and sensors. High deposition rate, composition control of deposition, and low processing temperature to retain active compositions are also desirable. To this end, this study describes combining colloidal sol chemistry with a nonthermal atmospheric pressure dielectric barrier discharge plasma jet to print hybrid inorganic/organic tungsten trioxide/oxalic acid (WO3–x/OA) microspheres. Injection of an aerosol of oxalic acid stabilized colloidal tungstic acid into an atmospheric pressure plasma jet results in the deposition of spherical structures in which the colloid is trapped within a plasma-polymerized organic shell. Subsequent low-temperature sintering produces hierarchical spherical shell-like structures comprising tungsten oxide nanosheets. Alteration of the gas flow rate changes the composition of the deposited material. The method has promise for the general preparation from colloidal precursors of porous materials of controlled morphology and composition with hierarchical microstructures, such as are required for applications in electrochemical devices and sensors which need a high ratio of surface area to volume and connectivity throughout the structure, yet also need a microstructure which is open for rapid exchange of reactants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.