Abstract

Owing to the low theoretical potential of the urea oxidation reaction (UOR), urea electrolysis is an energy-saving technique for the generation of hydrogen. Herein, a hierarchical structure of CuO nanowires decorated with nickel hydroxide supported on 3D Cu foam is constructed. Combined theoretical and experimental analyses demonstrate the high reactivity and selectivity of CuO and Ni(OH)2 toward the UOR instead of the oxygen evolution reaction. The hierarchical structure creates a synergistic effect between the two highly active sites, enabling an exceptional UOR activity with a record low potential of 1.334V (vs the reversible hydrogen electrode) to reach 100mA cm-2 and a low Tafel slope of 14mV dec-1 in 1 m KOH and 0.5 m urea electrolyte. Assembling full urea electrolysis driven by this developed UOR electrocatalyst as the anode and a commercial Pt/C electrocatalyst as the cathode provides a current density of 20mA cm-2 at a cell voltage of ≈1.36V with promising operational stability for at least 150 h. This work not only enriches the UOR material family but also significantly advances energy-saving hydrogen production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.