Abstract

Foremost, practical applications of spin-crossover (SCO) materials require control of the nature of the spin-state coupling. In existing SCO materials, there is a single, well-defined dimensionality relevant to the switching behavior. A new material, consisting of 1,2,4-triazole-based trimers coordinated into 1D chains by [Au(CN)2 ]- and spaced by anions and exchangeable guests, underwent SCO defined by elastic coupling across multiple dimensional hierarchies. Detailed structural, vibrational, and theoretical studies conclusively confirmed that intra-trimer coupling was an order of magnitude greater than the intramolecular coupling, which was an order of magnitude greater than intermolecular coupling. As such, a clear hierarchy on the nature of elastic coupling in SCO materials was ascertained for the first time, which is a necessary step for the technological development of molecular switching materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.