Abstract

The blind recognition of communication parameters is a key research issue for commercial and military communication systems. The results of numerous investigations about symbol timing estimation, modulation recognition as well as identification of the number of transmitters have been reported in the literature. But, to our knowledge, none of them have dealt with the recognition of the Space-Time Block Codes (STBC) used in multiple transmitter communications. In order to blindly recognize the STBC of a wireless communication, this paper proposes a method based on the space-time correlations of the received signals. Under perfect timing synchronization and under ideal conditions (full rank channel and a number of receivers greater or equal to the number of transmitters), it shows that the Frobenius norms of these statistics present non-null values whose positions only depend on the STBC at the transmitter side. A classifier for the space-time code recognition of 5 linear STBC (Spatial Multiplexing, Alamouti Coding, and 3 Orthogonal STBC using 3 antennas) is presented. Simulations show that the proposed method performs well even at low signal-to-noise ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.