Abstract

Our understanding of the neurofunctional mechanisms of speech production and their pathologies is still incomplete. In this paper, a comprehensive model of speech production based on the Neural Engineering Framework (NEF) is presented. This model is able to activate sensorimotor plans based on cognitive-functional processes (i.e., generation of the intention of an utterance, selection of words and syntactic frames, generation of the phonological form and motor plan; feedforward mechanism). Since the generation of different states of the utterance are tied to different levels in the speech production hierarchy, it is shown that different forms of speech errors as well as speech disorders can arise at different levels in the production hierarchy or are linked to different levels and different modules in the speech production model. In addition, the influence of the inner feedback mechanisms on normal as well as on disordered speech is examined in terms of the model. The model uses a small number of core concepts provided by the NEF, and we show that these are sufficient to create this neurobiologically detailed model of the complex process of speech production in a manner that is, we believe, clear, efficient, and understandable.

Highlights

  • This paper provides an overview of the neurolinguistic part of speech production, from initiation through formulation to implementation of the cognitive specification of an utterance in a phonological form (Levelt, 1989; Levelt et al, 1999; Indefrey and Levelt, 2004)

  • The model is structured hierarchically and the neural feedforward activations from the cognitive level to the motor level of speech production are influenced by several feedback mechanisms

  • Associative memories are mainly impaired in the transcortical motor area and the transcortical sensory area in the mixed type of aphasia, while state buffers are mainly impaired in Broca’s, Wernicke’s, and in conduction aphasia

Read more

Summary

Introduction

This paper provides an overview of the neurolinguistic part of speech production, from initiation through formulation to implementation of the cognitive specification of an utterance in a phonological form (Levelt, 1989; Levelt et al, 1999; Indefrey and Levelt, 2004). The intention, the message, or the amount of information that the speaker wants to pass on to a communication partner is activated (i.e., a preverbal message). This information corresponds to a selection of semantic concepts (e.g., “boy, dog, hunting”) and a concept frame (e.g., “action, action executor, action object”). The formulation includes phonological encoding (i.e., access to the phonological form of each word), along with re-syllabification of the entire utterance, which may become necessary due to the inflection and sequencing of the words The formulation includes phonological encoding (i.e., access to the phonological form of each word), along with re-syllabification of the entire utterance, which may become necessary due to the inflection and sequencing of the words (e.g., in English: /he/passed/us/ -> /hi/pEs/t@s/; phonological transcriptions are embraced by /. . . / and written in SAMPAnotation here (SAMPA, 2005)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.