Abstract

We present a framework for building a medical natural language processing (NLP) system capable of deep understanding of clinical text reports. The framework helps developers understand how various NLP-related efforts and knowledge sources can be integrated. The aspects considered include: 1) computational issues dealing with defining layers of intermediate semantic structures to reduce the dimensionality of the NLP problem; 2) algorithmic issues in which we survey the NLP literature and discuss state-of-the-art procedures used to map between various levels of the hierarchy; and 3) implementation issues to software developers with available resources. The objective of this poster is to educate readers to the various levels of semantic representation (e.g., word level concepts, ontological concepts, logical relations, logical frames, discourse structures, etc.). The poster presents an architecture for which diverse efforts and resources in medical NLP can be integrated in a principled way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.