Abstract

We recently introduced a concept for the counterion-mediated hierarchical self-assembly of an amphiphilic ABC miktoarm star terpolymer in aqueous media into micrometer-sized compartmentalized particles with a highly periodic lamellar fine structure (“woodlice”). Herein, we extend this concept to different miktoarm star polymer systems containing a polycationic segment. The presence of a poly(N-methyl-2-vinylpyridinium) (P2VPq) block and its interaction with iodide/triiodide counterions is crucial. In analogy to linear diblock copolymer systems the hydrophilic/hydrophobic balance of polybutadiene-arm-poly(N-methyl-2-vinylpyridinium iodide)-arm-polystyrene miktoarm star terpolymers determines the morphology of the primary building blocks (spherical micelles and cylindrical micelles/vesicles) and the obtained superstructures (stacked lamellar structures and multilamellar vesicles) during this hierarchical process. When an ABA' miktoarm star copolymer (polystyrene-arm-poly(N-methyl-2-vinylpyridinium iodide)-arm-polystyrene) without a dynamic core-forming block was investigated, a different mechanism into “woodlouse” structured aggregates via aggregation and deformation of intermediate vesicles was found. The individual steps of the different self-assembly processes were investigated by transmission electron microscopy and additionally supported by dynamic light scattering, differential scanning calorimetry, and small-angle X-ray scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.