Abstract

Uniform Ni(OH)2 hierarchical nanostructures, assembled from ultrathin nanoflakes with thickness of only ∼7.4 nm, are designed and investigated as electrochemical pseudo-capacitor materials for potential energy storage applications. The ultrathin nanostructures exhibit a highest specific capacitance of 1715 F g−1 at a scan rate of 5 mV s−1 within the potential range of 0.6 V with high rate capability and good cycling stability. The high specific capacitance and remarkable rate capability are promising for supercapacitor applications. To understand the effect of the microstructure on the properties, we also synthesized uniformly stacked Ni(OH)2 nanoplatelets (thickness of ∼22 nm) and randomly arranged hexagonal nanosheets (thickness of ∼140 nm). Both of the latter configurations exhibited good performance despite showing inferior properties compared to the uniform ultrathin Ni(OH)2 nanostructures. These results suggest the importance of rational design and synthesis of ultrathin nanomaterials for high-performance energy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.