Abstract

AbstractAssembling complex nanostructures on functional substrates such as electrodes promises new multi‐functional interfaces with synergetic properties capable of integration into larger‐scale devices. Here, we report a microemulsion‐mediated process for the preparation of CuO/Cu electrodes comprising a surface layer of a densely packed array of unusual cog‐shaped CuO microparticles with hierarchical nanofilament‐based superstructure and enhanced electrochemical performance in lithium‐ion batteries. The CuO particles are produced by thermolysis of Cu(OH)2 micro‐cog precursors that spontaneously assemble on the copper substrate when the metal foil is treated with a reactive oil‐based microemulsion containing nanometer‐scale aqueous droplets. The formation of the hierarchical superstructure improves the coulombic efficiency, specific capacity, and cycling performance compared with anodes based on CuO nanorods or polymer‐blended commercial CuO/C black powders, and the values for the initial discharge capacity (1052 mA h g−1) and reversible capacity (810 m A h g−1) are higher than most copper oxide materials used in lithium‐ion batteries. The results indicate that a fabrication strategy based on self‐assembly within confined reaction media, rather than direct synthesis in bulk solution, offers a new approach to the design of electrode surface structures for potential development in a wide range of materials applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.