Abstract

In this paper, we propose a novel hierarchical scheme for detection and tracking of vehicles using a vehicle-mounted camera in nighttime under urban environment, where a vehicle can be represented by a pair of taillights and various types of lights are commonplace. The proposed scheme, therefore, mainly focuses on devising robust detection and pairing of taillights in spite of their inherent diversity and continuous transformation in appearance. Thus the appearance symmetry, which many conventional methods rely on, for paring is not guaranteed to be available all the times. Each of the three layers in the scheme is devised to identify a vehicle from individual lights and clutters detected in a hierarchical manner. Robust detection of a pair of taillights, which can be regarded as a vehicle, is sought by successive groupings of the components in a layer and checking not only the intra-layer but the inter-layer relations between them. A structural Kalman filter is employed to maintain the temporal consistency in the motion of the components and their relations as well. Exploiting such relational information increases accuracy in tracking of individual components by reducing effects from fluctuation in positions and shapes, and eventually compensating possible failures in detection of them. As a result, the proposed scheme achieves enhancement in detection and tracking of vehicles in nighttime as proven by experiments on videos including crowded urban traffic scenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.