Abstract

While bidirectional path tracing is a well-established light transport algorithm, many samples are required to obtain high-quality results for specular-diffuse-glossy or glossy-diffuse-glossy reflections especially when they are highly glossy. To improve the efficiency for such light path configurations, we propose a hierarchical Russian roulette technique for vertex connections. Our technique accelerates a huge number of Russian roulette operations according to an approximate scattering lobe at an eye-subpath vertex for many cached light-subpath vertices. Our method dramatically reduces the number of random number generations needed for Russian roulette by introducing a hierarchical rejection algorithm which assigns random numbers in a top-down fashion. To efficiently reject light vertices in each hierarchy, we also introduce an efficient approximation of anisotropic scattering lobes used for the probability of Russian roulette. Our technique is easy to integrate into some existing bidirectional path tracing-based algorithms which cache light-subpath vertices (e.g., probabilistic connections, and vertex connection and merging). In addition, unlike existing many-light methods, our method does not restrict multiple importance sampling strategies thanks to the simplicity of Russian roulette. Although the proposed technique does not support perfectly specular surfaces, it significantly improves the efficiency for caustics reflected on extremely glossy surfaces in an unbiased fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.