Abstract

The data in PET emission and transmission tomography and in low dose X-ray tomography consist of counts of photons originating from random events. The need to model the data as a Poisson process poses a challenge for traditional integral geometry-based reconstruction algorithms. Although qualitative a priori information of the target may be available, it may be difficult to encode it as a regularization functional in a minimization algorithm. This is the case, for example, when the target is known to consist of well-defined structures, but how many, and their location, form and size are not specified. Following the Bayesian paradigm, we model the data and the target as random variables, and we account for the qualitative nature of the a priori information by introducing a hierarchical model in which the a priori variance is unknown and therefore part of the estimation problem. We present a numerically effective algorithm for estimating both the target and its prior variance. Computed examples with simulated and real data demonstrate that the algorithm gives good quality reconstructions for both emission and transmission PET problems in an efficient manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.