Abstract
Stroke patients with left Hemispatial Neglect (LHN) show deficits in perceiving left contralesional stimuli with biased visuospatial perception towards the right hemifield. However, very little is known about the functional organization of the visuospatial perceptual neural network and how this can account for the profound reorganization of space representation in LHN.In the present work, we aimed at (1) identifying EEG measures that discriminate LHN patients against controls and (2) devise a causative neurophysiological model between the discriminative EEG measures. To these aims, EEG was recorded during exposure to lateralized visual stimuli which allowed for pre-and post-stimulus activity investigation across three groups: LHN patients, lesioned controls, and healthy individuals. Moreover, all participants performed a standard behavioral test assessing the perceptual asymmetry index in detecting lateralized stimuli. The between-groups discriminative EEG patterns were entered into a Structural Equation Model for the identification of causative hierarchical associations (i.e., pathways) between EEG measures and the perceptual asymmetry index.The model identified two pathways. A first pathway showed that the combined contribution of pre-stimulus frontoparietal connectivity and individual-alpha-frequency predicts post-stimulus processing, as measured by visual-evoked N100, which, in turn, predicts the perceptual asymmetry index. A second pathway directly links the inter-hemispheric distribution of alpha-amplitude with the perceptual asymmetry index. The two pathways can collectively explain 83.1% of the variance in the perceptual asymmetry index.Using causative modeling, the present study identified how psychophysiological correlates of visuospatial perception are organized and predict the degree of behavioral asymmetry in LHN patients and controls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.