Abstract
Personalized news recommendation is becoming increasingly important for online news platforms to help users alleviate information overload and improve news reading experience. A key problem in news recommendation is learning accurate user representations to capture their interest. However, most existing news recommendation methods usually learn user representation only from their interacted historical news, while ignoring the clustering features among users. Here we proposed a hierarchical user preference hash network to enhance the representation of users' interest. In the hash part, a series of buckets are generated based on users' historical interactions. Users with similar preferences are assigned into the same buckets automatically. We also learn representations of users from their browsed news in history part. And then, a Route Attention is adopted to combine these two parts (history vector and hash vector) and get the more informative user preference vector. As for news representation, a modified transformer with category embedding is exploited to build news semantic representation. By comparing the hierarchical hash network with multiple news recommendation methods and conducting various experiments on the Microsoft News Dataset (MIND) validate the effectiveness of our approach on news recommendation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.