Abstract
The Fenton like catalyst Fe3O4 is still limited in wastewater treatment due to its narrow pH range, metal shedding and low catalytic efficiency. Here, a robust urushiol mediated Fe3O4/three-dimensional (3D) graphene was proposed to tackle these challenges. Fe3O4/3D-PU-G (H) was established by loading dense Fe3O4 nanoparticles onto urushiol functionalized 3D graphene via simple solvothermal and mild post-heating. It exhibited rapid degradation (50.3% in 10 s, 97.3% in 10 mins) and reusability (86.8% after 7 cycles) of tetracycline (TC) in a wide pH range (3–11) and various waste water samples. Such excellent performance was attributed to the formation of a stable and compact 3D porous conductive network, which promotes the electron transfer between Fe species and H2O2, the activation of H2O2 to generate OH and the reaction between OH and TC. This work provides a feasible approach for the preparation of efficient heterogeneous catalytic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.