Abstract

Solar-powered interfacial evaporation is a developing and sustainable technique increasingly utilized in desalination and wastewater purification. This technology involves the creation of cellulose nanofiber (CNF)/polylactic acid (PLA) composite aerogels through the Pickering emulsion approach. Self-floating aero-hydrogel (E-VGP) with a hierarchical porous structure was formed on a viscous mixture containing polyvinyl alcohol (PVA), peach gum polysaccharide (PGP), and polypyrrole (PPy) via an in-situ polymerization process. Furthermore, by modifying the hydrolysis time of PGP with a hyperbranched polyhydroxy structure, VGP hybrid hydrogels of varying microscopic molecular sizes were produced. Additionally, solar vapor generators (SVG) with diverse macroscopic structures were fabricated using molds. The V8G4-12hP0.2 hybrid hydrogel, synthesized using PGP hydrolyzed for 12 h, exhibited an evaporation enthalpy of water at 1204 J g−1. This capacity effectively activates water and enables low enthalpy evaporation. Conversely, the macrostructural design allows the cylindrical rod raised sundial-shaped structure of SVG3 to possess an expanded evaporation area, minimize energy loss, and even harness additional energy from its nonradiative side. Consequently, this micro-macrostructural design enables SVG3 to attain an exceptionally high evaporation rate of 3.13 kg m−2 h−1 under 1 Sun exposure. Moreover, SVG3 demonstrates robust water purification abilities, suggesting significant potential for application in both desalination and industrial wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.