Abstract

Plastic crisis, especially for poly(ethylene terephthalate) (PET) bottles, has been one of the greatest challenges for the earth and human beings. Processing recycled PET (rPET) into functional materials has the dual significance of both sustainable development and economy. Providing more possibilities for the engineered application of rPET, porous PET fibers can further enhance the high specific surface area of electrospun membranes. Here, we use a two-step strategy of electrospinning and postprocessing to successfully control the surface morphology of rPET fibers. Through a series of optical and thermal characterizations, the porous morphology formation mechanism and crystallinity induced by solvents of rPET fibers were discussed. Then, this work further investigated both PM2.5 air pollutants and protein filtration performance of rPET fibrous membrane. The high capture capability of rPET membrane demonstrated its potential application as an integrated high-efficiency aerosol filtering solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.