Abstract

AbstractLimited lithium resources have promoted the exploration of new battery technologies. Among them, potassium‐ion batteries are considered as promising alternatives. At present, commercial graphite and other carbon‐based materials have shown good prospects as anodes for potassium‐ion batteries. However, the volume expansion and structural collapse caused by periodic K+ insertion/extraction have severely restricted further development and application of potassium‐ion batteries. A hollow biomass carbon ball (NOP‐PB) ternarily doped with N, O, and P was synthesized and used as the negative electrode of a potassium‐ion battery. X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectroscopy, and transmission electron microscopy confirmed that the hollow biomass carbon spheres were successfully doped with N, O, and P. Further analysis proved that N, O, and P ternary doping expands the interlayer distance of the graphite surface and introduces more defect sites. DFT calculations simultaneously proved that the K adsorption energy of the doped structure is greatly improved. The solid hollow hierarchical porous structure buffers the volume expansion of the potassium insertion process, maintains the original structure after a long cycle and promotes the transfer of potassium ions and electrons. Therefore, the NOP‐PB negative electrode shows extremely enhanced electrochemical performance, including high specific capacity, excellent long‐term stability, and good rate stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.