Abstract

High-performance adsorption toward Congo red and Cr(VI) depends on the design of hierarchical nanostructures. Herein, hierarchical porous Ni/Co-layered double hydroxide (NiCo-LDH) hollow dodecahedra were synthesised by etching zeolitic imidazolate framework-67 (ZIF-67) as a self-sacrificing template with Ni(NO3)2. The synthesised NiCo-LDH showed better adsorption property for adsorbing Congo red and Cr(VI) ions (Cr2O72−) than NiCo2O4-NiO, which was obtained by calcining NiCo-LDH at 350 °C. The adsorption processes of Congo red and Cr(VI) ions very well fitted the pseudo-second-order model. The Langmuir model was more suitable than the Freundlich model in describing the adsorption isotherm, and the theoretical maximum adsorption capacities of Congo red and Cr(VI) ions were 909.2 and 99.9 mg g−1 at 30 °C, respectively. Furthermore, the synthesised NiCo-LDH was recyclable and could selectively adsorb anionic dyes. This work can serve as a basis for designing and manufacturing excellent adsorbents for water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.