Abstract

Zinc-ion capacitors (ZICs) are a promising and safe energy storage system for portable electronics but usually limited by relatively low areal capacity and energy density. Although increasing the mass loading has been suggested, thick electrode layers and clogged pores unavoidably lead to sluggish electron transport and ion diffusion as well as “dead volume” of active materials. Herein, a millimeter-scale 3D thick-network electrode, composed of closely intertwined hierarchical porous N-doped and free-standing carbon nanofibers (HPNCFs), was fabricated via carbonization of nanoscale zeolitic imidazolate framework (ZIF-8) particles embedded in electrospun polyacrylonitrile (PAN) nanofibers. With fast electron/ion transport, large ion-accessible surface area and high utilization rate of active materials, the mass loading of the HPNCFs electrode can reach 48.67 mg cm−2 with a thickness of 4.46 mm. Moreover, the HPNCFs-based ZICs can yield a superior areal/gravimetric capacity of 4.13 F cm−2 /280 F g−1, superior rate capability up to 193.7 F g−1 even at 100 A g−1, high energy density of 99.6 Wh kg−1, and long-term stability for 40,000 cycles. The straightforward approach can provide an opportunity to prepare efficient thick electrodes that could be applied in electrocatalysis, energy storage/conversion, and other electrochemical energy-related techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call