Abstract

Porous structures offer an attractive approach to reduce the amount of natural resources used while maintaining relatively high mechanical efficiency. However, for some applications the drop in mechanical properties resulting from the introduction of porosity is too high, which has limited the broader utilization of porous materials in industry. Here, it is shown that steel monoliths can be designed to display high mechanical efficiency and reversible self-reinforcing properties when made with porous architectures with up to three hierarchical levels. Ultralight steel structures that can float on water and autonomously adapt their stiffness are manufactured by the thermal reduction and sintering of 3D printed foam templates. Using distinct mechanical testing techniques, image analysis, and finite element simulations, the mechanisms leading to the high mechanical efficiency and self-stiffening ability of the hierarchical porous monoliths are studied. The design and fabrication of mechanically stable porous monoliths using iron as a widely available natural resource is expected to contribute to the future development of functional materials with a more sustainable footprint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.