Abstract

Hierarchical porous MnCo2O4 yolk-shell microspheres have been synthesized via a facile chemical precipitation method with subsequent calcination treatment. The hierarchical porous MnCo2O4 yolk-shell microspheres as secondary nanomaterials can improve the effective contact area between the MnCo2O4 electrode and electrolyte, accommodate the volume variations during cycling, and shorten the Li+ diffusion path in the nanoparticles. Benefiting from their particular structure and interconnected pores, as anodes for lithium ion batteries, the hierarchical porous MnCo2O4 yolk-shell microspheres show high reversible lithium storage capacity, excellent cycling performance and enhanced rate capability. More importantly, they also exhibit long-life and high-rate lithium storage as high as 691.3 mA h g-1 after 500 cycles even at 1 C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call