Abstract

In order to extensively synthesize mesoporous metal-organic frameworks (mesoMOFs), we developed a strategy to construct permanent interparticle porosity based on nanoscale metal-organic frameworks (NMOFs). Using the strategy, we have attained a series of interparticle porosity dominated mesoMOFs (IPD-mesoMOFs) from six MOF-types with MIl-100, MIL-53, HKUST-1, DUT-5, DUT-4 and MIL-101(Cr) (termed as IPD-mesoMOF-1, -2, -3, -4, -5 and -6) structure, respectively. All members of this series are not only comparable to inorganic mesoporous materials to have the tunable mesopore apertures varying from a few nanometers to over a dozen nanometers, but also superior to the inorganic counterparts to remain hierarchical porosity with higher surface area (up to 2130m2g−1), larger mesopore volume (the highest to 2.59cm3g−1) and optional micro-porosity of diverse crystalline structures. The large mesopore apertures and rich carboxyl residues on the mesopore-walls also allow the IPD-mesoMOF series to accommodate large organic and inorganic molecules, especially to immobilize the bulky natural protein, such as, hemoglobin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call