Abstract

Here, stretchable hierarchical porous polyurethane fibers were designed, fabricated, and employed as a three-dimensional hierarchical interconnected framework for conductive networks interwoven with silver nanoparticles and carbon nanotubes. The fiber possessed favorable thermal insulation, strain sensing, and electric heating properties. The core-shell layered porous structure of fiber made the fiber have high heat insulation performance (the difference value of temperature |ΔT| = 3.54, 8.9, and 12.7 °C at heating stage temperatures of 35, 50, and 65 °C) and ultrahigh elongation at break (813%). Importantly, after conductive filler decoration, the fiber could exhibit real-time strain-sensing capacities with a high gauge factor. In addition, the fibers could be heated at low voltage, like an electrical heater. The development of flexible, stretchable, and multifunctional porous fibers had great potential applications in intelligent wearable devices for integrated thermal management, strain sensing, and intrinsic self-warming capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call