Abstract

Global warming caused by CO2 emissions is a major environmental problem. Thus, the development of materials with innovative architectures that approach the CO2 problem is a necessity. In this study, hierarchical porous carbon fibers (HCFs) were synthesized by a chemical deposition process that operates at 400 °C and uses solution-plasma-generated soot (PGS) as a carbon precursor. Subsequently, the CO2 adsorption capacity of the synthesized material was evaluated. The HCFs showed enhanced surface areas and networks of micropores and mesopores. Moreover, the HCFs were post treated by metal etching and KOH activation. The post treated HCFs achieved a CO2 uptake of 0.8 mmol g−1 at 273 K, which was superior to the simultaneously produced solution plasma carbon (SPC), which has a CO2 uptake of 0.2 mmol g−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call