Abstract

Hierarchical porous carbon is prepared by a combination of self-organization and chemical activation and explored as counter electrode for dye-sensitized solar cells. Pore structure analysis shows that micropores generated within the mesopore wall and the pristine mesopore structure of mesoporous carbon are preserved during KOH activation. Electrochemical impedance spectroscopy studies demonstrate a relatively high electrocatalytic activity of hierarchical porous carbon electrode for triiodide reduction, as compared with a pristine mesoporous carbon electrode. This enhanced electrocatalytic activity is beneficial for improving the photovoltaic performance of dye-sensitized solar cells. The overall conversion efficiency of dye-sensitized solar cells with the hierarchical porous carbon electrode increased by 11.5% compared with that of the cell with a pristine mesoporous carbon electrode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call